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Continuous dependence of fixed points of condensing maps

Jack K. Hale

Many problems in analysis are -concerned with the dependence upon para-

meters of fixed points of maps. For contraction mappings, criteria are

~relatively easy to obtain and have been known for some time. In the study

of solutions of functional differential equations, more general results were

needed by Hale and Cruz [3] and Melvin [8]. Kasriel and Nashed [4] and Cain

and Nashed [1] have also obtained some theorems in this direction under the
name of stability of fixed points of nonlinear mappings. It is the purpose

of this paper to give a rather general fixed-point theorem for condensing

maps depending on a parameter, to prove continuous dependence and to indi-

cate how many of the previous results are special cases.

An interesting theorem on continuous dependence of a fixed point of a
map obtained by means of an asymptotic fixed—point theorem is contained in
the paper of Lopes [6].

We begin with a few definitions and known results. If A is a bounded

set of a Banach space X, define the measure a(B) of noncompactness of a set

B to be a(B) = inf{d>0: B has a finite covering of diameter less than d}.
A bounded set B has a(B) = 0 if and only if the closure B of B is compact.
This concept was introduced by Kuratowski [5] and later Darbo [2] showed

i) a(co B) = a(B), where co B is the closed convex hull of B,
ii) a(B+C) < a(B) + a(C),

iii) a(BUC) = max(a(B),a(C)).



2.

Suppose T'" is a subset of X and T: I' > X is a continuous mapping. The

~map T is said to be condensing if for any bounded set BCT, a(B) > 0, it

is a kg[o,l) such that for any bounded set BT, a(TB) < ka(B). An a-
contraction is necessarily condensing, but the converse may not be true. For
linear operators, the concepts are equivalent. Any mapping which is the sum
of a contraction operatdr and’a completely continuous operator-is an a-
contraction. A fundamental result which will be used throughout .is the fol-
lowing generalization of Schauder's fixed-point theorem (see Sadovskii [9]

and Martelli [7]).

- Lemma 1. If T is a closed bounded convex subset of X and T: I' = T is con-

densing, then T has a fixed point.

Suppose X,[i aré Banach spaces, A is a subset of Z; I'is a qlosed
bounded subset of X and T: T x A - k.is a.given mapping satisfying
hl) T(-,\) is continuous for each Ael and there exists a KoeA such'_
that T(x,\) is continuous at x,ko for each xel.
hz) fhe equation |
(1) x = T(x,A)
for A = xb has a unique solution x(},) in r.’ |
4h3)-For évery rtcr, afl'') > 0, there is an open neighborhood B =

B(I'") of X, such that for any precompact set A'C A QB, we have
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Theorem 1. For each ieAMNB(T), suppose (1) has a solution x(A)el. Then

x(1) > x(AO) as A » AO.

Proof. Suppose.{xk}c;_A-ﬂ B(T) is an arbitrary sequence converging to XO as

~

follows that o(TB) < & (B). The map T is said to be an a-contraction if there .




k + », and let x(Ak)eF be a solution -of (1) for X = A If T = {x(kk)},

. k*
choose k so large that A' ='{Ak}<Z.A7(7B(Tf)A' Since A' is precompact and
(hS) is satisfied,

allt) = a({T(XX ’Ak)} < a(T(T',A%)) < a(TY)

. k ’

if a(T') > 0. Since this is impossible, a(F'') = 0 and T'' is precompact.
Since T is closed, there is a subsequence {vk} ofi{Ak} and zel such that
x(vk) + z as k + », Condition (hl) implies z = T(z,AO) and (h2) implies
z = x(AO). Since every convergent subsequence of the [X(Ak)} must converge to
the same limit, it follows that X(Ak) > X(AO) as k > «», Since the sequence

{Ak} was an arbitrary sequence converging to AO’ the proof of the theorem is

complete.

Cbrollary 1. Suppose T satisfies (h2) and

hu) T(+,)) is condensing for each reh, and T(x,\) is continuous at Ao

uniformly for xel.:
Then T satisfies (hi) - (ha) and the conclusions of Theorem 1 are valid.

Proof. Since a condensing map is continuous, (hu) implies (hl). Thus we need
only show that (h3) is satisfied. Let BB = {A:IA—AOI < B} Uniform continuity
at Ao implies for any € > O there is a B(e) > 0 such that lT(x,A)—T(x,AO)l <

e if AeB,

8(e)? xel. IF T'<C T and a(F') > 0, thep T(-,A,) condensing implies

““there i21?-a~iiki‘i'=fk’(“P:S;TA;;):eE.O;TI—);:such%t-thai_c:q-(*T(EE%;;Abe):)sj;_';Kpt-(\fl?%—);’ let2e=_ .

8a(r') and choose ¢ > 0 so small that k+§ < 1. Since

T(x,2) ='T(x,AO) + [T(x,)2) - T(x,ko)],



we have, for any A'‘CA ) B

B(e)?

a(T(T',AY)) i_a(T(F',XO)) + 2e < (k+8)a(T') < a(T")
Thus, (h3) is satisfied and the corollary is proved.

Corollary 2. If (hl) - (h3) are satisfied, I' is also convex and T:T x A »> T,
then there is a solution x()A) of (1) for each AeA N B(I) and x(1) - x(xo)

as x> Ao.

Proof. Use Lemma 1 and Theorem 1.

We now give some specific mappings which satisfy the conditions of

Theorem 1 and, in particular, condition (h3). Suppose X, Y,C are Banach

spaces, I' is a closed bounded set of X and A is a subset off;. Suppose
(2) Q: T x A~>Y
(3) G: T x Q(T,A) x A > X
: def
(u) T: T x A~ Xav T(x,A) = G(x,Q(x,1),}))

Lemma 2. If Q, G, T are defined as above and for each precompact A'C A

and each precompact Y'<ZQ(T,A) we have

-

hs) G( -,y,A):T > X is a contraction uniformly with respect to

(y,A)e¥" x Af

h) Q(r,A') is precompact ,

then T satisfies condition (h3).

def
Proof. From (h6), the set Q(T,A') = Y' is compact. Suppose A' is a

-
1
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precompact set of A. Then hypothesis (hS) implies there is a ke[0,1) such

that
|6(x,y,0)-G(x,y,A)| < k|x-x| | for all (y,A)eY' x A'.
Therefore, for any ' C T
a(G(T',Y',AY)) j_ka(F') .

Furthermore,

C(T(r A1) = ol U 6(x,Q(x,1),1))
(x,A)el txp!
<ol U  G(x,y 1))

(x,¥,) JeTxY XA
= a(G(r,Y'0") ¢ ka(T?)
| ' This proves (ha) and the lemma.

Now let us make a few more hypotheses on Q, G; namely,

h7) Q(x,1) is continuous in x for each Ael and
0(x,)) is continuous in (x,\) at (x,ko)er x A.
h8) G(x,y,x) is continuous in y for each (x,0)el x A and G(x,y,\) is-

continuous in (y,ﬂ) at (x,y,Ao) for each (x,y,A\)el x Q(T,A) x A.-

If conditions (hq) - (h8) are satisfied, then the map T(-,A):T = X defined by
(4) satisfies (hl). In fact, for any precompact A'C A, there is a ke[0,1)

such that, for any (x,A)el x A', (x,A)el’ x A', we have



[T(X,X)—T(;,X)' i IG(X,Q(X,)\),K) - G(}_(,Q(X,)\),X)I
+ ]6(x,Q(x,0),0) - G(x,0(x,%),1)]
< Klxex] + [6(F,000,00,0) - 6(F,Q(%,E LA

Now one obtains the result by observing that the set A! = {Xk} is precompact
if A > A, and A' = {A} is compact for any given AeA.

We thus obtain the following

Theorem 2 [8]. Suppose T: T x A + X is defined by (&) and
conditions (hs) - (h8) are satisfied. Then T satisfies (hl) - (h3) and the

conclusions of Theorem 1 are valid.
For the special case where G(x,y,\) = S(x,A) + y, we have the following:

Corc¢llary 3 [8]. Suppose T =S + U, S: T x A » X, Ust T x A~ X, T satisfies

(hl), (h2) and for each compact set A'C A

hg) S(+,r) is a contraction uniformly with respect to Aedt,

hlo) U(r,r') is precompact.

Then T satisfies (hl) - (h3) and the conclusions of Theorem 1 are valid.

Corollary 4 [3]. Suppose T is defined as in Corollary 3, satisfies condition.

ST ECRE of”fﬁ{eoremfffl?iQ’f"s’E{‘ffgfi@s,*;(lfigf)faﬁd‘%als.di,}fir!ffigfgﬁ e

hll) S(-,X) is a contraction for each Aeh, U(:,)) is continuous for

each AeA.

hl2) S(x,1), U(x,A) are continuous at A, uniformly for xel.

TN
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Then T satisfies (hl) = (ha) and the conclusions-of Theorem 1 are valid.
Proof. This follows from Corocllary 1.

In a similar manner, one can generalize Theorem 1.2A of [8].

-As another application, let us consider a problem of Cain and Nashed tl]
concerning stable sélutions of nonlinear equations. In [1], generally locally
convex spaces are considered, but we can see how fheir results for.Banach
spaces can be obtained-from Theorem l; Suppose we consider all contiﬁuoﬁs

maps A of some open ball U into X. We may then define ||Al—A2||U =

supx€61|Alx«A2x||. Let S(x,r) = {yeX:||y-x||<r}.
Definition. Suppose xOgU, AO: U+ X and ono = Yo- The solution X of Aou =

Yo is said to be stable if for any r > 0, S(x,r) C U, there isa d > 0, a > 0
such that for any ygS(yO,d), Aj: U X, |[Al—AO[[U < a, there is an xeS(xO,r)

such that Alx = y.

Without loss in generality, one may assume Vo = 0. Thus, if A0 =

I - T,, then x, is a fixed point of T

0’ 0 U > X, we

0 If, for aAfixed yveX, Al:

define

def

X + (Alx - on) -y = % - T(x,Al,y)

X ‘.?0

then showing that a solution X, of AOXO = 0 is stable is equivalent to showing

that each

of the operators T(x,Al,y) has a fixed point XES(xo,r) for every

11911 < &5 [18,-84]], < a. In particular, x, will be stable if we can show

the fixed points are continuous at y = 0, Al = AO' The parameter A in Theorem

1 can be taken as A = (y,Al).

Following Cain and Nashed [1], let A: X - X.



l.

n(xo,A) = inf{r: R(xO,A,p)<l}-

If n(xO,TO) = 0, x5 = Tox,, then x

0 0 is an isolated fixed point of T

0 0°

Furthermore, there is an r which may be taken as small as desired so that
]]TOX—XO]] < R(x,,Tg,r)r < v if llx—xoll =r.

Consequently, Ty

a > 0, d > 0 such that co T(S(x,,r),A;,y) <.5(x,1) for Iy]| < a, ||A1—AO|| <

: BS(xo,r) -> S(XG,p). One can now choose r > 0 so small and

a. Let p be a retract of S(xo,l) onto S(xo,r) and define F(-,A,,y): S(0,1) »
<4

S(0,1) by F(x,Al,y) = T(p(x);Al,Y). * Then the fixed points of F(-,Al,y) must

belong to S(xo,r). Furthermore, F(~,Al,y) is a condensing map if T(-,Al,y)

is condensing and we have the following consequence of Theorem 1 and Lemma 1.

Theorem 3. If Box0 = 0, n(xO,I—BO)-= 0, then X, is a stable solution of

BOXO = 0 relative to the class of operators B such that I-B is condensing.

When thé operators B are completely continuous, this is Theorem 4.1 of
(1]. Theorem 4.2 of [1] in Banach spaces is also a special case of Theorem 1

and Lemma 1.
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